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Abstract  – 

Quality inspection of existing buildings is a task 

currently performed by human inspectors. In general, 

these inspections consist of assessing the different 

elements of a building as they are being constructed, 

checking that they are within acceptable tolerances, 

and meeting industry standards. Typically, this 

process is carried out by doing a visual inspection, 

taking photographs, and using measuring tools to 

identify deficiencies for further comparison with the 

BIM model. The acquired data must be analyzed by 

different specialists such as civil, electrical, and 

mechanical engineers, looking for defects or 

substandard installations. This process is time-

consuming and dependent on the human factor, 

leading to errors and inconsistencies. 

To counteract that, we propose a methodology 

based on a multi-robot system that works 

synergistically to automatically collect data and 

analyze it for the further generation of a quality 

report. By automating the process, we are making the 

quality inspection more reliable, robust, and time-

efficient. 

The master robot will collect general data and 

identify specific regions of interest (ROI) (e.g., 

potentially defective areas). When additional 

information is needed, the master robot will 

command the slave robot to approach the ROI to 

collect more detailed data. This can be used to inspect 

some of the most prevalent defects in construction 

sites, such as cracks, hollowness in walls (i.e., lack of 

insulation or incomplete concrete fillings), surface 

finishing defects, alignment errors, evenness, 

inclination deviations, and possibly more. 
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1 Introduction 

Automated processes have increasingly become more 

popular during the last decade in most industry-related 

fields. However, the construction field has not progressed 

at the same rhythm despite multiple studies proving that 

automation in construction would significantly improve 

the efficiency and productivity of the process [1]–[3]. 

Part of this slow adoption can be attributed to the 

unstructured nature of construction sites and their 

constantly transforming character. 

Automation can significantly optimize tasks that need 

to be performed periodically and require repeatability. 

The construction progress monitoring and quality 

assessment are good examples of tasks that can be 

automated. Currently, those tasks are usually tackled by 

multiple experts that need to inspect the construction site 

visually, in most cases with the help of measuring tools. 

Unfortunately, this can lead to inconsistencies between 

consecutive reports because of the heavy reliance on the 

human factor.  

In this study, we propose an automated construction 

inspection system (AutoCIS) for the quality inspection of 

buildings. The system consists of a multi-robot approach 

that, acquiring data from multiple sources (3D Scanners, 

visible and infrared cameras, environmental sensors, etc.), 

will provide, in an autonomous way, robust and reliable 

quality assessment during the construction progress. An 

overview of the proposed process is shown in Figure 1. 

There are different quality assessment-related 

elements that could be automated. For this study, the 

focus will be limited to the task to identify specific 

elements, such as cracks, hollowness in walls (i.e., lack 

of insulation or incomplete concrete fillings), surface 

finishing defects, alignment errors, evenness, and 

inclination deviations.  

The rest of the paper is structured as follows: Section 

2 introduces the state-of-the-art on the two main areas of 
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this research (i.e., multi-robot systems and Automation in 

the construction field). Section 3 presents the details and 

main features of the autonomous robotic platform. 

Section 4 explains the methodology and the data 

processing. Finally, Section 5 summarizes the 

conclusions and provides an outlook for future work. 

2 Previous work 

2.1 Master-slave robotic approaches 

Research has proven that developing a multi-robot 

system (MRS) is more cost-effective than developing a 

single costly robotic platform with all the capabilities [4]. 

When it comes to defining the taxonomy and architecture 

that different MRS can adopt, there are systems where 

the workload and task assignment are equally distributed 

between the different agents inside the MRS, and systems 

where there is a hierarchy between the different agents 

and one of them is acting in command [5]. With systems 

where the number of agents is minimal, the latter 

approach is more efficient and robust. 

The master-slave denomination refers to systems 

where there are at least two agents with two different 

roles, one of them being in charge of assigning tasks 

(master) and the other one that would follow said 

commands (slave). This architecture has been widely 

used in the medical field, where surgical robots act as the 

slave component in a system where a human operator 

manually commands the movements through a master 

device. In the construction field, there are few approaches 

where MRS have been used for applications such as 

mapping the environment, block placing, or 3D concrete 

printing coordination [6]–[8]. Most of these approaches 

present an equally distributed task allocation between the 

different agents inside the MRS, making them suitable 

for repetitive and simple tasks.  

The system proposed in this study uses a master-slave 

MRS, making it a robust system that can deal with the 

unpredictability and harshness present in the construction 

environment. To the authors’ knowledge, this is the first 

study in which a master-slave MRS is considered for 

high-level tasks in the construction field. 

2.2 Automation in the construction field 

The current state of the use of robotic systems in 

construction sites is far from having autonomous robots 

performing specific task-oriented procedures, such as 

high-level construction assignments (e.g., bolting, 

painting, tiling, or bricklaying) [9]–[11]. This requires 

high precision and robustness to ensure that these 

platforms are safe working side-by-side with humans. 

However, this directly conflicts with the high complexity 

of the construction environment and the constant 

movement of assets.  

In contrast with the high-level construction 

assignments that require human collaboration, robots and 

autonomous processes can be integrated into tasks where 

no human interaction is needed, and there is not as much 

movement of assets across the site. Examples of suitable 

tasks are progress monitoring and quality assessment 

since these can be done when the construction works are 

paused. Automating these procedures can provide results 

with higher accuracy than those performed by skilled 

workers [10]. 

One of the steppingstones in the automation of 

construction is the BIM model. Many studies have shown 

that having a reliable and updated BIM model is the first 

step to increase efficiency and productivity in the overall 

construction process [12]. Therefore, a significant 

amount of research has been dedicated to creating as-

built models from the data collected at the site [13], [14]. 

This process is commonly referred to as scan-to-BIM, 

and it is especially useful for both progress monitoring 

and quality assessment since the elements to be compared 

with the BIM model need to be segmented and identified.  

2.2.1 Progress monitoring  

Progress monitoring is usually based on the manual 

comparison of as-planned and as-built schedules. 

However, as-built schedules are often not maintained and 

updated throughout the entire life of the project but 

generated at the final stage [15].  

Most of the progress monitoring approaches, even if 

they are updated during the construction process, do not 

consider the quality of the achieved progress [16], [17], 

which is something that can help prevent smaller 

problems from becoming bigger issues that might create 

rework, delay the construction process, and even affect 

the quality of the final product. By assessing the quality 

of the progress being made during the construction 

process, the generated report will be more accurate 

according to the current state of the construction and 

provide information for on-time actions to prevent 

defects in the final product. 

2.2.2 Quality assessment 

There is some research done regarding the quality 

assessment of construction [18]–[24]. When it comes to 

quality assessment of construction elements, there are 

two main approaches, namely destructive and non-

destructive evaluation methods [25], based on the nature 

of the sensing element. Since this study aims to have an 

autonomous robotic system performing quality 

inspection during the construction process, a non-

destructive evaluation method is preferred that allows for 

unsupervised and autonomous operation. The sensors 

used for non-destructive evaluation methods vary from 

3D scanners to DSLR and RGB-D cameras to thermal 
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infrared cameras or sensing probes to measure 

temperatures.  

In [18], they developed an autonomous platform for 

the quality assessment for some of the most common 

defects present in the construction environment (e.g., 

hollowness, crack evenness, alignment, and inclination 

defects). The proposed robot was equipped with a 

thermal camera, a color camera, a 2D laser scanner, and 

an inclinometer. The system was meant to be operated in 

finished buildings, and therefore is not suitable for a 

construction environment. 

A semi-autonomous system was proposed in [19]. 

The approach used manually taken photographs in order 

to reconstruct a 3D point cloud from the environment. 

Measurements were taken manually from the point cloud 

to later be compared with the stats present in the BIM 

model. They present an improvement on fully manual 

quality assessment, but the process still relies on the 

human factor, and it is also meant for post-construction 

assessments. 

Another post-construction quality assessment 

approach is developed in [20]. The authors proposed the 

robotic platform as an assistant to accelerate the process 

rather than performing the inspections on its own. The 

platform was equipped with a thermal camera and a 3D 

scanner. The acquired data was used to detect some of the 

most prominent defects present in floors, walls, ceilings, 

doors, and windows. 

Some approaches focus on specific elements of the 

building, such as pipes [22] or cracks [25], to provide an 

assessment regarding the proper geometric position of 

said elements and the deviation they present concerning 

the BIM model. 

As can be seen from the literature review, most 

progress-monitoring and quality assessment approaches 

do not deal with the quality and completeness of the 

collected data since it is usually not being processed in 

real-time. It has been proven that timely and accurate 

information collected from the construction site must 

have proper quality reports [26]. For the approaches that 

focus on quality assessment, all the current research 

revolves around post-construction assessment. In 

addition, most of the current approaches are not fully 

autonomous, relying in one way or another on the human 

factor for its normal operation. Therefore, the 

methodology presented here aims to fill in the gap for the 

current state-of-the-art, proposing a system that assesses 

the quality of the progress being made during the 

construction process autonomously and processing the 

data in real-time to collect accurate information. 

3 The robotic system 

The Automated Construction Inspection System 

(AutoCIS) proposed for this study consists of three 

modules: (1) the Master Unmanned Ground Vehicle (M-

UGV) robot, (2) the Slave UGV (S-UGV) robot, and (3) 

the Command Station. The UGVs (Figure 1) are 

equipped with different hardware with different 

capabilities. The reason for having two (or more) 

different UGVs is to distribute the responsibilities of the 

building inspection based on the capabilities of each 

robot. This architecture is scalable; therefore, additional 

robots can collaborate to perform inspection tasks (e.g., 

they can cover larger spaces or reduce the duration of the 

inspection).  

3.1 Command Station 

The Command Station is fixed on-site or off-site. It 

consists of a server and a communication device 

responsible for collecting data from the UGVs and 

displaying them in a human-readable format. Therefore, 

the Command Station also serves as the main interface 

between human operators and the UGVs. For example, 

the operators give “high-level” commands, such as 

perform a 3D scan in a specific area of the construction 

site, start-stop the inspection, set a new inspection 

protocol, etc. 

3.2 Master UGV  

The M-UGV robot is responsible for allocating tasks 

and collecting the data from all the S-UGVs, merging 3D 

scans, creating 3D models of the construction, analyzing 

the collected data, and sending comprehensive reports to 

the Control Station. 

The M-UGV is a four-legged robot capable of 

navigating in a dynamic construction environment, for 

example, obstacles, narrow pathways, stairs, etc. The 

payloads of the Master UGV robot include a high-

performance Computing Unit based on x64 architecture 

CPU and a CUDA capable GPU. The main data 

collection instrument is a 3D scanner to acquire detailed 

3D point cloud data with color information. The robot is 

also equipped with five short-range depth cameras 

needed for perception and a communication device. 

Figure 1. Unmanned Ground Vehicle and sensors. 

Photo taken at the KINESIS lab at NYUAD 
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3.3 Slave UGV 

The S-UGV is responsible for creating a local 3D map 

of the current environment (which it shares with the M-

UGV), navigating to predefined local coordinates by 

avoiding obstacles, interacting with the physical world 

(turn valves, flip levers, open doors, etc.), and collecting 

data from a variety of sensors. 

The S-UGV is the same four-legged robot as the M-

UGV but with different payloads. In order to interact with 

the physical world, the robot is equipped with a six DOF 

Robotic Arm with an end effector and a two-finger 

Gripper with a high-resolution Visible Camera. For 

navigation, a fusion of long-range LiDAR, five short-

range depth cameras, and encoders are used to perceive 

the environment. For data collection related to the 

inspection, the S-UGV is equipped with a high-resolution 

double spectrum camera (visible, thermal) mounted on a 

three-axis gimbal. The robot is also equipped with a 

Computing Unit to run the local algorithms and a 

communication device. 

3.4 Communication  

All the modules of the AutoCIS are interconnected 

through a mobile ad hoc network (MANET) capable of 

transferring data with speeds up to 120 Mbit/s operating 

in a Mesh topology. Through this network, the robots and 

Control Station exchange data for Telemetry, 3D maps, 

Sensors Measurements, etc. The Mesh architecture will 

allow for future expansion of the network when multiple 

robots are used, in both range and number of nodes. 

4 Methodology 

The main stages of the proposed system are shown in 

Figure 2. It consists of two basic elements: Data 

acquisition (for the M-UGV and S-UGV) and data 

processing. To effectively monitor and perform the 

quality assessment, the AutoCIS needs to autonomously 

navigate through the construction site, collect 

information from different sources, and process said 

information in real-time to ensure there is no missing 

information [27]. To simplify and facilitate the 

communication between the BIM workflow and the 

AutoCIS, we propose the BIM model as the only input to 

the process. Therefore, the M-UGV needs to fully 

understand the information present in the BIM model and 

interact with it to further retrieve the required data. 

4.1 Data acquisition 

The M-UGV and S-UGV fulfill an important part of 

the process as a whole. The data will come from various 

Figure 2. Flowchart of the overall methodology. 
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sources and sensors, mainly categorized in long-range 

and short-range, distributed between the M-UGV and the 

S-UGV, as indicated in Section 3. 

4.1.1 M-UGV 

The M-UGV is going to collect long-range data. The 

3D scanner provides long-range information. The point 

cloud obtained will be used to build the general model of 

the construction site, obtaining the overall structure and 

geometry. The RGB information will help to determine 

regions where more data collection is needed. From now 

on, these regions will be called Regions of Interest (ROI). 

In the proposed system, an initial floor map is 

extracted from the BIM model (using the IFC format). 

This floor map is used to generate a set of waypoints in 

each of the different planned spaces to ensure complete 

coverage of the scenario.  

Waypoint-based navigation has been proven to be the 

most efficient way to collect as much data as possible 

from the construction site [28]. A set of waypoints 

located in the center of each space defined in the BIM 

model is automatically extracted from the initial floor 

map. The M-UGV will autonomously go from one 

position to the next, stopping on said waypoints to collect 

a 3D point cloud from the long-range 3D scanner. Plenty 

of solutions already exist for indoor positioning and 

autonomous path planning [29]. In this platform, we used 

an Adaptive Monte-Carlo Localization algorithm [30] 

and a Dijkstra-based planner approach [31]. 

4.1.2 S-UGV 

The S-UGV is equipped mainly with short-range 

sensors, as indicated in Section 3. Although thermal 

information would be used as long-range to get an initial 

idea of the thermal characteristics of the different 

construction elements, it will also be used in a short-

range approach whenever the S-UGV moves towards 

different ROIs to collect higher resolution images. 

Before the AutoCIS moves towards the next waypoint 

in a different space, the S-UGV receives a set of local 

waypoints corresponding to the different ROIs detected 

in the pre-processing stage during the data processing 

part. The S-UGV then moves towards said waypoints in 

order to collect better quality data from those regions. 

The data collected is put together with the data taken by 

the M-UGV for further processing. 

The constantly changing aspect of a construction 

environment makes it extremely hard for an autonomous 

robotic platform to navigate the construction site [32]. 

The presence of temporal obstacles and the rapidly 

evolving scenario requires a constant update of the maps 

used for autonomous navigation, making unreliable an 

approach entirely based on the initial maps obtained from 

the IFC file. That is why a multi-robot approach such as 

the one presented in this study increases the sources of 

information and allows for a complete obstacle map 

updated in real-time. As the S-UGV moves around the 

construction site, it runs a Simultaneous Localization and 

Mapping (SLAM) [33] approach used to update real-time 

the maps generated from the IFC file. This information is 

being used by the navigation algorithms of both the S-

UGV and the M-UGV. 

4.2 Data processing 

4.2.1 Pre-processing stage 

A set of ROIs is generated in real-time after each 3D 

scan is taken. In order to do that, a mix of geometric, 

RGB, and thermal information is being processed before 

the AutoCIS moves to the next waypoint. Every time the 

M-UGV takes a scan, a pre-processing stage is being 

applied to the collected data. During pre-processing, data 

collected from different sources (3D geometry, RGB and 

infrared), discontinuities, and interesting features are 

used to detect two types of areas: 1) areas where not 

enough data has been collected, for example, due to 

occlusions or because they are hard to reach (Figure 3), 

and 2) areas in which data of higher resolution needs to 

be collected. These areas are tagged as ROIs for the S-

UGV to explore. 

 

Figure 3. Example of a cluttered part of the point 

cloud where not enough data was collected. 

Regarding the first type of areas, these can be 

detected in the 3D point cloud by analyzing its density 

(i.e., amount of points per surface unit) and big areas 

lacking points. 

The second type of area can be detected by inspecting 

the RGB and thermal images. The RGB orthoimages 

corresponding to each structural element segmented from 

the point cloud are processed to look for discontinuities 

and defects, such as cracks or finishing defects. Higher-

resolution data could be collected from the S-UGV for 

further quantifying the extension of said defect. Lastly, 

the collected thermal images are studied to look for 

discontinuity patches that could indicate the presence of 

different defects, such as hollowness or lack of insulation 
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that could be properly detected with higher resolution 

data coming from the S-UGV. 

4.2.2 Data analysis for possible defects 

After the pre-processing stage and the data collection 

from the S-UGV have been done, all the information 

corresponding to each space is further registered with the 

accumulated point cloud using the localization data 

coming from the robot. An Iterative Closest Point 

algorithm [33] is then used in order to refine the 

alignment of these two data sets. 

Some of the main defects to be identified in the 

processing stage are: 

1. Hollowness in walls, leaks, and insulation problems. 

With the thermal information, the AutoCIS can 

detect incongruences inside the main structural 

elements. By studying the continuity of the 

structural element in the thermal space, a lack of 

insulation material or hollowness in the wall can be 

detected. The fact that the platform would be 

operating at the end of the working shift benefits the 

detection of these two features. This is because 

changes in the ambient temperature would be 

assimilated at different speeds by the construction 

elements, based on their structure behind the 

surface finishing. If there are noticeable problems 

with insulation, discontinuities in the thermal 

information can be expected due to how the internal 

structure follows the change of temperature, which 

would presumably decrease at the end of the 

working shift. Leaks would be difficult to detect in 

any of the two other data spaces, but the thermal 

information would provide a clear indicator of said 

defects by detecting the presence of humidity.  

2. Surface finishing defects. By studying 

discontinuities in the RGB space, the system would 

be able to identify defects regarding the surface 

finishing of the construction element. Some of the 

most common defects regarding this category are 

surface roughness, paint discontinuities, and cracks. 

Cracks’ overall position is being detected in the pre-

processing stage from the RGB images using an 

Artificial Intelligence-based approach [34], tagging 

the location for further inspection. With the higher 

resolution images collected from the detected 

location, further image processing can be done to 

obtain quantitative data regarding the cracks. Some 

of the statistics obtainable from this stage are the 

cracks’ length, width, and direction. 

 

3. Alignment, evenness, and inclination deviations. 

Whenever two construction elements are 

concatenated with each other, the angle at which 

they join is measurable by studying the 3D 

geometry from the point cloud. When each 

construction element has been segmented (Figure 4), 

a theoretical plane representing a continuous space 

of said element can be computed. The system can 

accurately compare the alignment with the BIM 

model by inspecting the angle at which those two 

consecutive planes intersect. This can be done by 

obtaining the relative orientation (𝜃) between the 

normal vectors of said planes, �⃗�  and 𝑣  using 

Equation 1. 

cos 𝜃 =  
�⃗�  ∙ 𝑣 

‖�⃗� ‖‖𝑣 ‖
 (1) 

 

Finally, the inclination of the floor can be assessed 

through the sensors onboard the robot and by inspecting 

the 3D point cloud. 

The evenness of the wall can be assessed by studying 

the geometric distance of the 3D points belonging to a 

wall with respect to the theoretical plane computed for 

said wall. By doing this, the bumps and depressions in 

the wall are clearly visible (Figure 5). The results show 

the areas of the wall that are not completely even with the 

plane approximation. 

 

  

(a) (b) 

Figure 4. a) Original point cloud. Colors represent 

elevation (blue - low level; yellow - high level. b) 

Segmented point cloud. Colors represent different 

elements. 

Once all data has been processed and assessed, it is 

presented in a structured and organized way to the user 

in the form of a quality report. This report will include a 

3D representation of the space with color-coded 

information that will easily be accessible to the user. In 

addition, a list of all the discrepancies identified during 

the comparison will be available. 

5 Conclusions and future work 

Most of the research done regarding quality 

assessment focuses on the post-construction stage, where 

it might be too late to fix ongoing defects and would only 

imply additional work, time, and money to fix them. This 

study presents the preliminary work done to develop the 

AutoCIS, an automated construction inspection system 

consisting of a multi-robot approach for autonomous 

quality assessment and progress monitoring during the 

construction stage. 
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Figure 5 Left) Original point cloud. Right) 

Deviation of the wall with respect to the plane 

approximation of it. 

The robotic system has been properly chosen to be 

efficient when navigating the harsh construction 

environment, collecting sufficient data to analyze some 

of the most common defects found in construction. With 

the M- and S-UGV onboard sensors, collected data from 

three different spaces (RGB, 3D point cloud, and infrared) 

can be processed, providing sufficient data to be analyzed 

and used to identify ongoing issues. Some of the current 

limitations of the proposed system rely on the presence 

of a complete and accurate BIM model. Segmenting each 

of the different elements in the construction site is not 

trivial. A wide variety of elements can be present (e.g., 

pipes, cables, columns of different shapes), and they can 

easily be mistaken by auxiliary elements such as 

scaffolding. Further robustness in order to prevent this is 

still needed.  

Some individual parts have already been tested, but 

current work focuses on the scaling up of the experiment 

and validating the proposed AutoCIS as a whole. Once 

the platform is fully developed, the quality assessment 

can be easily extended into progress monitoring, 

including the 4D information from the BIM model.  
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